Site-specific immobilization of gold binding polypeptide on gold nanoparticle-coated graphene sheet for biosensor application.
نویسندگان
چکیده
The effective and strong immobilization of enzymes on solid surfaces is required for current biological applications, such as microchips, biofuel cells, and biosensors. Gold-binding polypeptide (GBP), a genetically designed peptide, possesses unique and specific interactions with a gold surface, resulting in improved enzyme stability and activity. Herein we demonstrated an immobilization method for biosensor applications through site-specific interactions between GBP-fused organophosphorus hydrolase (GBP-OPH) and gold nanoparticle-coated chemically modified graphene (Au-CMG), showing enhanced sensing capability. A flow injection biosensor was fabricated by using GBP-OPH/Au-CMG to detect paraoxons, a model pesticide, showing higher sensitivity, lower detection limit and better operating stability compared that of OPH/Au-CMG. This strategy, which integrates biotic and abiotic moieties through site-specific interactions, has a great potential for use in biosensing and bioconversion process.
منابع مشابه
Cytotoxity Assessment of Gold Nanoparticle-Chitosan Hydrogel Nanocomposite as an Efficient Support for Cell Immobilization: toward Sensing Application
Cell-based biosensors have become a research hotspot in biosensors and bioelectronics fields. The main feature of cell-based biosensors is the immobilization of living cell on the surface of transducers. Different types of polymers which are used as scaffolds for cell growth should be biocompatible and have reactive functional groups for further attachment of biomolecules. In this work, the cel...
متن کاملSynthesis and characterization of gold-deposited red, green and blue fluorescent silica nanoparticles for biosensor application.
Fluorescent silica nanoparticles deposited with highly monodisperse gold nanoparticles (1-2 nm) were synthesized via the W/O method and intensive ultrasound irradiation. A large surface area of gold-doped fluorescent silica nanoparticle serves as a platform to immobilize a specific binding protein for biomolecules interaction in bioimaging applications.
متن کاملDNA Biosensor for Determination of 5-Fluorouracil based on Gold Electrode Modified with Au and Polyaniline Nanoparticles and FFT Square Wave Voltammetry
In the present study, a new biosensor for 5-Fluorouracil was described using modified goldelectrode and Fast Fourier transform square wave voltammetry (FFT SWV). Calf thymus DNAimmobilization was on a gold electrode decorated with polyaniline and gold nanoparticles. Theelectrochemical characteristics of the electrodes were investigated by cyclic voltammetry, andelectroch...
متن کاملBiosensor Based on Tyrosinase Immobilized on Graphene-Decorated Gold Nanoparticle/Chitosan for Phenolic Detection in Aqueous
In this research work, electrochemical biosensor was fabricated based on immobilization of tyrosinase onto graphene-decorated gold nanoparticle/chitosan (Gr-Au-Chit/Tyr) nanocomposite-modified screen-printed carbon electrode (SPCE) for the detection of phenolic compounds. The nanocomposite film was constructed via solution casting method. The electrocatalytic activity of the proposed biosensor ...
متن کاملReduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor
Introduction: Growing demands for ultrasensitive biosensing have led to the development of numerous signal amplification strategies. In this report, a novel electrochemiluminescence (ECL) method was developed for the detection and determination of caspase-3 activity based on reduced graphene oxide sheets decorated by gold nanoparticles as signal amplification element and horseradish peroxidase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 3 7 شماره
صفحات -
تاریخ انتشار 2011